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ENVIRONMENTAL IMPACT ASSESSMENT: 
"PSEUDOREPLICATION" IN TIME?' 

ALLAN STEWART-OATEN AND WILLIAM W. MURDOCH 
Department of Biological Sciences, University of California, Santa Barbara, California 93106 USA 

AND 

KEITH R. PARKER 
Marine Review Committee, 531 Encinitas Boulevard, Encinitas, California 92024 USA 

Abstract. A recent monograph by Hurlbert raised several problems concerning the appropriate 
design of sampling programs to assess the impact upon the abundance of biological populations of, 
for example, the discharge of effluents into an aquatic ecosystem at a single point. Key to the resolution 
of these issues is the correct identification of the statistical parameter of interest, which is the mean 
of the underlying probabilistic "process" that produces the abundance, rather than the actual abundance 
itself. We describe an appropriate sampling scheme designed to detect the effect of the discharge upon 
this underlying mean. Although not guaranteed to be universally applicable, the design should meet 
Hurlbert's objections in many cases. Detection of the effect of the discharge is achieved by testing 
whether the difference between abundances at a control site and an impact site changes once the 
discharge begins. This requires taking samples, replicated in time, Before the discharge begins and 
After it has begun, at both the Control and Impact sites (hence this is called a BACI design). Care 
needs to be taken in choosing a control site so that it is sufficiently far from the discharge to be largely 
beyond its influence, yet close enough that it is influenced by the same range of natural phenomena 
(e.g., weather) that result in long-term changes in the biological populations. The design is not appro- 
priate where local events cause populations at Control and Impact sites to have different long-term 
trends in abundance; however, these situations can be detected statistically. We discuss the assumptions 
of BACI, particularly additivity (and transformations to achieve it) and independence. 

Key words: environmental monitoring, impact assessment; independence; pollutants; power plants; 
replication; serial correlation; statistical transformations; statistics. 

INTRODUCTION 

Assessing the environmental effects of a single source 
of pollution within the constraints of a feasible sam- 
pling regime can pose difficult statistical problems. Some 
of these are raised by Hurlbert (1984) in his discussion 
of "pseudoreplication" in ecology, under the headings 
of "optimal impact design" and "temporal pseudorep- 
lication" (Hurlbert 1984:203-205). Analogous prob- 
lems can also occur in the design of ecological exper- 
iments unrelated to pollution. Here we use Hurlbert's 
paper as a starting point to present an impact assess- 
ment procedure that can solve the statistical problems 
in many situations. Since Hurlbert contends that the 
problems are insurmountable, we begin by disputing 
several of his claims. 

Hurlbert discusses Green's (1979:24) example in 
which a pollutant is discharged into a river and the 
biological species of interest is sampled upstream and 
downstream of the discharge point, both before and 
after the discharge flow begins. Hurlbert makes the 
following assertions concerning a "situation where only 
a single control area and a single impact area are avail- 
able." 

1) ANOVA (and by implication other procedures of 
inferential statistics) cannot be validly used to test 

'Manuscript received 21 June 1984; revised 15 October 
1985; accepted 18 October 1985. 

whether the discharge has affected the downstream 
abundance. (a) It "can only demonstrate significant 
differences between locations, not significant effects of 
the discharge." (b) "Since the treatments cannot be ... 
assigned randomly to experimental plots ... the ex- 
periment is not controlled except in a subjective and 
approximate way." (c) A significant "'areas-by-times 
interaction' can be interpreted as an impact effect only 
if we assume that the differences between upstream 
and downstream locations will remain constant over 
time" if the discharge has no effect. "This is unrea- 
sonable. The magnitude of the true difference ... 
changes constantly over time." In any case "we would 
have to make arbitrary decisions about how to measure 
difference." E.g., if Xl and Xc are the densities at 
Impact and Control areas, should the "difference" be 

XI- XC or XI/XC or something else? 
Hurlbert appears here to be dismissing the design 

described as "optimal" by Green (1979:161 and col- 
umns 3-5 of Fig. 3.2). In this design, observations are 
made at one or more sites in the Impact and Control 
areas on a single occasion Before the disturbance and 
on another single occasion After. A significant areas- 
by-times interaction is taken to imply a discharge ef- 
fect. Such an interaction implies that the difference 
between the Impact and Control (or downstream and 
upstream) abundances changed after the discharge be- 
gan. 
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2) Hurlbert claims that the "optimal" design de- 
scribed by Green cannot be salvaged by taking repeated 
observations over time, treating the times as replicates, 
and testing to see if the difference between the Impact 
and Control means (over time) undergoes a change at 
the time of the introduction of the discharge. 
"[S]uccessive samples ... are so obviously going to be 
correlated with each other" that analyzing the succes- 
sive dates "as if they were independent replicates of a 
treatment ... is invalid." (Hurlbert's Fig. 5c legend 
adds that this analysis assumes, implicitly, that data 
from the same site at different times have come from 
independent replicates.) 

Although Hurlbert does not say so, objections (a)- 
(c) in (1) seem intended to apply also when there is 
repeated sampling over time. (The "areas-by-times" 
interaction would now be an "areas-by-periods" in- 
teraction, referring to the periods Before and After dis- 
charge. 

3) For the design described by Green, Hurlbert says 
"the best one can do ... is to develop graphs and tables 
that clearly show both the approximate mean values 
and the variability of the data on which they are based." 

Hurlbert's claims under point (1) relate to Green's 
"optimal" design, and we first stress that he is correct 
in rejecting that design, which does not solve the as- 
sessment problem. 

However, we believe that there is a design that will 
permit a valid impact assessment in many cases. This 
design involves using the sampling times as replicates, 
as in (2) above, but with the important qualification 
that Impact and Control sites are sampled simulta- 
neously and each sampling time is represented in the 
analysis by only one number, the difference between 
the Impact and Control samples for that time. One of 
our main aims is to explore the extent to which this 
design overcomes Hurlbert's objections. To do this, we 
need first to clarify some aspects of claims (a), (b), and 
(c) in point (1). 

Claim (a) is wrong if it means the test can demon- 
strate only that one site is different from the other. It 
has force if it means that it is hard to distinguish a 
discharge effect from some other change occurring at 
the same time. This force is much weakened by the 
replication-in-time design, as we discuss in A Proposed 
Solution (Power Plant Example): Interpreting the Test 
Results. 

Both (b) and (c) concern the statistical "population" 
and parameters to which our inferences are to refer. 
We believe (b) is misleading in implying that impact 
assessment is like analyzing a badly designed experi- 
ment in which treatment allocation has not been ran- 
domized: assessments and experiments ask different 
questions, as we discuss in The "Statistical" Population 
and Parameters in Question. Claim (c) identifies the 
crucial error in Green's design, but describes it less 
precisely than we need here. The error arises because 
Green misidentifies the population and parameters of 

concern. These need to be carefully described before 
we can judge whether (c) applies to the replication-in- 
time design. The "Statistical" Population and Param- 
eters in Question is devoted to this description. 

With this clarification, we then argue that the as- 
sessment problem can indeed be solved by taking rep- 
licates over time. We illustrate this in A Proposed So- 
lution by describing an analysis of the impact of a 
power plant on the open ocean. We use this example 
because we are familiar with it and with the biology 
involved. This is essential, since an important point 
we want to make is that all statistical procedures re- 
quire assumptions, and these assumptions must be jus- 
tified by reference both to the data (by plots and formal 
tests) and to a priori knowledge of the physical and 
biological system generating the observations. 

Finally, in Assumptions, Graphs, and Tables, we 
criticize Hurlbert's claim (3) on the grounds that graphs 
and tables that are used to justify conclusions (rather 
than to suggest patterns or appraise assumptions) re- 
quire at least as many assumptions as inferential sta- 
tistical procedures do. Since their assumptions are fre- 
quently implicit, these graphs and tables usually provide 
a less reliable basis for conclusions, rather than a more 
reliable one. In particular, graphs and tables are more 
likely than inferential procedures to lead to false con- 
clusions from a design like that described by Green, 
because they make misidentification of the appropriate 
parameters even easier than analytical methods do. 

We focus our discussion of environmental impact 
assessment on one question: "Has the impact altered 
the local abundance of species X?" We believe this 
question can be satisfactorily answered in some cases, 
and A Proposed Solution outlines how. However our 
procedure answers the question only if there exists a 
suitable control area, as defined in that section. 

THE "STATISTICAL" POPULATION AND 

PARAMETERS IN QUESTION 

First, contrary to the implication of (b) in what we 
have labeled Hurlbert's point (1), our concern in most 
environmental impact problems is with a particular 
impact in a particular place resulting from a particular 
facility. It is not the general problem of determining 
the effect of impacts of this kind in places of this kind. 
This is an important difference between impact as- 
sessment, where the effect of an intervention in a par- 
ticular instance is at issue, and most basic scientific 
studies, where we are interested in the average or "usu- 
al" effect of an intervention over a large population of 
possible instances. The general question would require 
the selection of a set of sites representative of the kind 
of places we want to study, and random choices to 
decide which of these sites will be subjected to the 
power plant or discharge and which will be controls. 
But the particular impact question does not require 
such randomized choices. 

The next point is as important, but less obvious. To 
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FIG. 1. The abundances of "Species X" at the Impact and 
Control stations, and the difference of the abundances, as 
functions of time, in three versions of impact assessment. (A) 
In the most naive view, each station's abundance is constant 
except for a drop in the Impact station's abundance when the 
power plant starts up. (B) In a more plausible but still naive 
view, the abundances fluctuate (e.g., seasonally), but the dif- 
ference still remains constant except at start-up of the power 
plant. (C) In a more realistic view, the abundances fluctuate 
partly in synchrony and partly separately; the former fluctua- 
tions disappear in the differences but the latter remain, and 
the power plant effect must be distinguished from them. 

illustrate it, we imagine we are observing the abun- 
dances in two locations (Impact and Control), and that 
these abundances are observed over time without any 
sampling error. A naive view of impact detection is 
shown in Fig. 1A, where the abundance is constant at 
each location (though possibly different for different 
locations) except for a drop in the Impact abundance 
at the time of "start-up" (the beginning of operation 
of the power plant or the pollutant discharge). This 
naive view is made slightly more realistic in Fig. 1B, 
where seasonal or other regular movements are intro- 
duced, but it remains naive, as the difference in abun- 
dance (Impact minus Control) remains absolutely con- 
stant except for a drop at start-up. (The change in the 
Impact-minus-Control value between Before and After 
start-up reflects the "areas-by-periods" interaction.) 

The view in Fig. I A and B is naive because, in nature, 
abundances and their differences do not remain con- 
stant but vary in response to what can usefully be 
thought of as random influences: random births and 
deaths, encounters between individuals, behavioral 
choices (e.g., local movement), weather changes 

(storms), water changes (eddies, upwellings), and so on. 
Some of these influences (e.g., large storms) might have 
essentially the same effect at both locations, thus not 
affecting the difference, but others (e.g., individual 
movements) affect the two locations differently, and 
thus affect the difference. As a result, both the abun- 
dances and (perhaps to a lesser extent) the difference 
vary, as in Fig. 1C. 

It is presumably such varying values that Hurlbert 
has in mind when he says "The magnitude of the true 
difference . . . changes constantly over time," thereby 
making it impossible to evaluate any times-by-location 
interaction. The important point, however, is that this 
"true difference" is not the difference about which our 
inferences are to be made. The difference of relevance 
in impact studies is that between the mean heights of 
the dashed curves in Fig. 1 C in the Before and After 
periods. The fluctuations in the dashed lines within 
each period do indeed show that the difference between 
locations is constantly changing, but one can still dis- 
tinguish an additional difference between locations, not 
present in the Before period, that is present in the 
After period. The statistical problem is to characterize 
the differences between locations within both periods, 
so that the added difference due to impact can be dis- 
tinguished. 

To explore the characterization of these differences 
between locations, we present a more detailed picture 
in Fig. 2. Here, the smooth curve represents the true 
mean abundance of the population. The aim of as- 
sessment is to determine if this mean abundance at the 
Impact location has been altered by the power plant 
or discharge. The jagged line represents the path traced 
out by the actual population. This actual population 
will differ from the mean as a result of a variety of 
chance factors, as previously discussed. Finally, the 
dots represent estimates, based on replicate samples, 
made of the actual population by the investigator. 

x 
ACTUAL 

WPOPULATION 

CO 

a. 

LL0 

0 
w 

* PROCS z 
< MEAN 

SAMPLE: < 
~~~VALUES 

BEFORE START-UP 

FIG. 2. The three functions to be distinguished: the mean 
of the population-producing process (considered as a set of 
random and deterministic elements as inputs, with the pop- 
ulation abundance as output); the actual population, which 
constitutes a single realization of this process; and the sample 
estimates 0, which (if unbiased) are centered on the actual 
population. 
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The concept of a true mean population density per- 
haps needs clarification. We provide this before dis- 
cussing the implication of Figs. 1 and 2 for Green's 
proposed optimal design. 

The sequence of abundances in Fig. 1 C is generated 
by the interaction of a large set of factors, some random 
(like those mentioned) and some systematic (e.g., sea- 
sons, local topography and current patterns, and the 
presence or absence of the power plant). The interac- 
tion of these factors constitutes an abundance-produc- 
ing process, and the sequence of abundances that arises 
is part of a single outcome (or "realization") of this 
process. It is one such outcome that we actually sample 
over any period of time at a given place. In principle, 
if we could go back in time, we could fix the systematic 
factors at the same values and re-run the process: be- 
cause the random factors would take different values, 
we would expect to get a different sequence of abun- 
dances, a different realization. Thus the sequence of 
abundances that actually occurred was not the only 
one possible: there is a vast collection of sequences that 
could have occurred. Given the systematic factors, in- 
cluding presence or absence of the power plant, it is 
the random factors that determine which of these se- 
quences will be the one that actually arises. Thus the 
random factors impose a probability distribution on 
the collection of possible sequences. The parameters 
of this probability distribution are determined by the 
systematic factors. 

Our task is to use the observed sequence to estimate 
aspects of the probability distribution; in particular, 
we aim to infer the effect of the power plant on the 
mean. 

This mean, or mean function, represented by the 
smooth line in Fig. 2, can be thought of as the average 
of the jagged lines obtained by a large number of re- 
runs of the process. 

A change in the Impact area's smooth line between 
Before and After might indicate a power plant effect. 
But the line may be changing anyway, e.g., with seasons 
and perhaps also with regional long-term trends. For 
this reason (and others related to independence and 
discussed later) we search instead for a change in the 
difference between the Impact area's smooth line and 
that of a nearby Control. This is the situation shown 
in Fig. 1 B, but now with the lines interpreted as the 
two mean functions, not as the paths of the actual 
populations. The important assumption that the dif- 
ference between the smooth lines is constant within 
each period (Before and After) is discussed in the next 
section (A Proposed Solution). 

These concepts are central to the error in Green's 
(1979) proposed design. To make inferences about the 
smooth lines we must estimate them and estimate the 
variance of our estimates. A natural estimate of the 
smooth line value at the time of sampling is the average 
of the sample values (the dots in Fig. 2). This is rea- 
sonable because the dots approximate the jagged line, 

which in turn approximates the smooth line. Green's 
crucial error is to use the variance among the dots to 
estimate the variance of this average. But the variance 
of the dots estimates variance about the jagged line; it 
gives no information on the variance of the jagged line 
about the smooth line. Consequently, observations 
taken at only one Before and one After time are useless 
for assessing impact, unless supported by other infor- 
mation: neither Green's inferential methods nor Hurl- 
bert's recommended graphs and tables take account of 
the full variability of the data. 

Only by sampling at many different times, both Be- 
fore and After start-up, can we hope to estimate the 
variability due to all sources, both sampling error and 
random population fluctuations. However, problems 
remain in this case, too. First, even knowledge of the 
entire jagged line is insufficient for inference about the 
smooth line unless some assumptions are made: in 
essence, we need the long-run averages of the devia- 
tions of the jagged line from the smooth line, and of 
the squares of these deviations, to be close to zero and 
to some constant (o2), respectively. The usual assump- 
tion is some form of ergodic stationarity in which the 
process "forgets" its remote past-i.e., the correlation 
between deviations that are far apart in time is close 
to zero (see, e.g., Parzen 1962:69 and following; Brei- 
man 1 968:chapter 6; Priestley 1981 :chapter 5). Second, 
if our conclusions are to apply to times outside the 
study period, the systematic factors contributing to the 
difference (Impact - Control) between the mean abun- 
dances (average physical conditions, etc.) must not 
change much over time. 

Both of these considerations, especially the first, play 
a role in the next section. The main conclusion of this 
section is that the correct assessment viewpoint is that 
of Fig. 1B, with the important qualification that the 
functions of interest are the means and their difference, 
not the actual populations and their difference (Fig. 
1C). The latter, which must themselves be estimated 
from samples, are only a guide to the former. 

A PROPOSED SOLUTION (POWER PLANT EXAMPLE) 

In this example, an Impact and a Control area are 
determined, and samples are taken simultaneously at 
both places at times t, t12, . . . Before the start-up of 
a power plant, and at times t21, t22, . . . After start-up. 
We thus call this a "BACI" design, though this acro- 
nym omits the important fact that the two sites are 
sampled simultaneously. The object is to see whether 
the difference between Impact and Control abundances 
has changed as a result of the start-up. Since "repli- 
cates" taken at the same time do not help us estimate 
the variance that matters, we simply average them. We 
therefore assume only one observation, say Xijk. for 
each time, tij, in period i (Before or After), at place k 
(Impact or Control). The plan is to compare the Before 
and After periods by a t test or a U test for a difference 
between the mean of the Before differences (estimated 
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by XlI. - X1l2, which is the average, over j, of 

Xiii - XIi2) and the mean of the After differences. 
These tests assume that, without the power plant, 

the difference between the means at the Impact and 
Control stations-the "smooth lines" (see Figs. lB and 
2)-would be constant. In other words, without the 
power plant, the effects of time and location on the 
mean local abundance of species X would be "addi- 
tive." The tests also assume that the observed differ- 
ences, calculated at different times, are independent. 
Finally, this impact detection procedure requires us to 
interpret a statistically significant result of the test as 
being due either to chance (whose probability is given 
by the significance level) or to the power plant. We 
discuss these issues in turn. 

Constancy of differences: additivity of 
time and location effects 

In Fig. 3A and B are illustrated ways in which the 
difference between the means (the smooth lines in Figs. 
1 B and 2) could be nonconstant. 

In Fig. 3A, the problem is one of scale. Various 
physical and other factors (e.g., seasons) affect the two 
areas in the "same" way, but the effect is multiplicative, 
not additive. Consequently the arithmetic difference in 
abundance tends to be greater at times when both areas 
have abundant populations than when both have sparse 
ones. 

This failure of the additivity assumption could have 
either of two consequences. If the fluctuations are peri- 
odic, as shown, and if the Before and After times are 
matched reasonably well (as b 1, b2, . . . with a 1, a2, 
. . .) the effect will be to produce a weaker, more con- 
servative test: the observed differences will fluctuate 
more than they would have from random factors alone. 
If the sampling times are poorly matched (e.g., b 1, b3, 
... to a2, a4, . . .), as could happen if the periodicity 
is not known or if its phase changes near the start-up 
time, then times with large smooth-line differences may 
be unequally represented in the two samples (Before 
and After), leading to a possible false finding. 

This problem can be eliminated, or at least much 
reduced, if our measurements are made in the "right" 
scale: in Fig. 3A, the log of abundance rather than 
abundance. The right scale is unknown, as Hurlbert 
(quoting Eberhardt 1976) says in his point 1C. There 
are two related ways to approximate it. One is to derive 
it from a model of the actual process. This could be a 
detailed model, or it could be something as simple as 
"most environmental changes have approximately 
multiplicative effects, so let's try the log transforma- 
tion." The success of such a transformation should then 
be tested, e.g., by the Tukey (1949) "one degree of 
freedom" test for nonadditivity. The other is to use 
the data in a formal procedure to estimate the right 
transformation. Box and Cox (1964) consider trans- 
formations of the form Y = (X + c)x, assume that Y is 
normally distributed, homoscedastic, and additive for 
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x CONTROL 
C,) 

L, b1 b2 b3 b4 tl a2 a3 a4 

O START-UP 

0 
Z (B) 

Z IMPACT 

CONTROL 

t TIME 
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FIG. 3. How natural nonconstancy of the difference of the 
process means influences the test for a power plant effect. (A) 
Nonadditive (e.g., multiplicative) effects cause the difference 
to be greater during periods of high abundance. If Before and 
After samples are reasonably matched for position on cycles 
(as bi, b2, . . . are matched with al, a2, . . .) the effect is an 
artificially inflated estimate of variance and a weak test. If 
samples are poorly matched (as b 1, b3, . . . are with a2, a4, 
... ) the effect is to bias the test. (B) Impact and Control sites 
change relative to each other in the "Before" period, without 
the power plant. If this trend continues, After differences should 
be smaller than Before ones, even if the plant has no effect. 

the right c and X, and propose estimating c and X by 
maximum likelihood. However, the transformation that 
makes Y additive (our main goal) may not make it 
normal; the Box-Cox procedure may not work well in 
this case, so we suggest the procedure of Andrews (1971), 
in which X and c are chosen to minimize the signifi- 
cance of a test for additivity of the Y's. (There is a vast 
literature on transformations. Some of it is reviewed 
by Hinkley and Runger 1984. A more informal dis- 
cussion appears in Mosteller and Tukey 1977:chapter 
5.) 

We now present an example using real data: 9 yr of 
observations on the arthropod Acuminodeutopus het- 
eruropus near the San Onofre Nuclear Generating Sta- 
tion, in California, Before start-up of the station (Fig. 
4). The Tukey test for additivity (Fig. 4C), which in 
this case amounts to a test for zero slope in the regres- 
sion of the differences against the averages, reveals a 
significant (P < .0001) departure from additivity; it 
remains significant (P - .0003) when the extreme point 
on the upper right in Fig. 4C is removed. Rather than 
use formal procedures to estimate X and c, we have 
chosen the commonly used transformation log(X + 1), 
the natural transformation for multiplicative effects but 
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FIG. 4. Example of real nonadditive data made additive by a transformation. (A) Raw abundances at Control (0) and 
Impact (*). (B) Difference in raw abundances between Control andlImpact. (C) Tukey test for additivity, which is equivalent, 
in this case, to a test for zero slope in the regression of differences against averages. Test is significant (P < .0001). (D) Log 
(abundance + 1) plotted against time. (E) Difference in log(abundance + 1) between Control and Impact. (F) Tukey test for 
nonadditivity on log(abundance + 1) is nonsignificant (P - .16). The data are total counts from samples of the arthropod 
Acuminodeutopus heteruropus over a 9-yr period near the site of the San Onofre Nuclear Generating Station, California. (For 
the sake of clarity, a dense cluster of points that should have appeared near zero at about year 5 of the time plots has been 
reduced to a single point. All points appear in the plots of difference vs. average.) 

perturbed to avoid problems with zeros. With the 
transformed data (Fig. 4D and E), the departure from 
additivity is not significant (P - .16, Tukey test; Fig. 
4F). 

The failure of additivity in Fig. 3B is of a different 
kind. Here the Impact and Control areas are changing 
relative to each other, even without the power plant. 
Our test for a power plant effect assumes there is no 
such change. More elaborate tests can be devised to 
allow for the change, but these tests must make as- 
sumptions about how the change would have pro- 
ceeded if there had been no power plant. In most cases, 
it seems safer to decide that, with this design, it will 

not be possible to detect a power plant effect on the 
species in question. Thus no attempt should be made 
to choose a transformation to correct this change. Rath- 
er, such correction should be avoided, the trend should 
be tested for, and the species not used in this analysis 
if the trend is present. In real-time plots of the differ- 
ences of raw abundances and of log-transformed abun- 
dances for the polychaete Aricidea wassi during 30 mo 
before start-up near San Onofre, both sets of differences 
appear to be decreasing over time (Fig. 5A and B). 

A third type of violation of the additivity assump- 
tion, not described in Fig. 3, can be dealt with. This is 
the problem of covariates. In the analysis we are de- 
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scribing, the Control area is not expected to be identical 
with the Impact area, but is intended to satisfy two 
much weaker requirements. One is that there exists a 
transformation such that the corresponding smooth 
lines at Impact and Control differ by a constant amount 
(not necessarily zero) in the Before period. The other 
is that not only regular effects (e.g., the seasonal fluc- 
tuations in the smooth lines) but also long-term ran- 
dom effects should be approximately equal at the two 
areas. By "long-term random effects" we mean effects 
that perturb the jagged line in Fig. 2 away from the 
smooth line by large amounts for long periods. Major 
storms might do this. Unequal long-term effects will 
lead to violations of independence assumptions, which 
we discuss in Independence of Temporal "Replicates." 
However, we note here that some violations of these 
assumptions can be dealt with by including the per- 
turbing influences as covariates. For example, if the 
Control area is nearer the mouth of a creek it may be 
more affected by runoff- potentially a long-term, ran- 
dom influence whose effect could be felt through sev- 
eral sampling times. In this case, one might include the 
volume of flow in the creek (possibly lagged) as a co- 
variate, and use analysis of covariance to test for the 
power plant effect. 

We have assumed here that any transformation 
should be based on the Before data, since these are 
known to be unaffected by the power plant. A power 
plant effect could cause the mean difference in the After 
period to change over time. This would not invalidate 
the test, since the null hypothesis is "no effect," though 
the power of the test will be less than it would have 
been had the After mean difference remained constant 
at its average value over the study period. 

Independence of temporal "replicates" 

Our observation or sample average at time tij in place 
k is equal to the corresponding smooth line value plus 
the deviation from it: 

Xijk = AiJk + Eijk- (1) 

The aim of the transformation procedure was to make 
the it's additive, at least approximately, so that 

Aij - Aij2 = Ai, (2) 

where ,i is constant within period i (Before or After). 
Thus the transformed differences D satisfy 

DU = Xij1- XiJ2 = Ai + Eijl - Eij2, (3) 

where the E's are errors, having means of zero (since 
the it's are defined to be the means of the X's). To carry 
out a t test, U test, or any other standard two-sample 
test comparing the D1j's with the D2j's, we require that 
the errors 

aij = Ei1 - -Eij2 (4) 

be independent. 
Note that it is the differences that are to be uncor- 
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in the differences of both (A) raw and (B) log-transformed 
abundances. The species is the polychaete Aricidea wassi over 
2/2 yr, near San Onofre, California. 

related, not the successive samples themselves, as the 
legend to Hurlbert's (1984) Fig. 5c indicates. If the 
samples are uncorrelated (i.e., E's for different times 
are uncorrelated) then the differences will also be un- 
correlated, but the latter condition can also hold with- 
out the former. 

For example, each error Eijk consists of two parts: 
sampling error (the difference between the average of 
the dots and the jagged line in Fig. 2), and what we 
might call "process error" (the difference between the 
jagged line and the smooth line). Thus 

Eijk = 
Uijk + 

Vijk, (5) 

where u and v are sampling and process errors, re- 
spectively. The independence of sampling errors is a 
standard assumption in virtually every study, random- 
ized or not. (This does not mean the assumption is 
always true, merely that it needs no special attention 
here.) If it should happen that the process errors are 
not independent over time, but are identical at the two 
locations, then the E's will not be independent but the 
process errors will vanish in the differences; i.e., if vijl = 

Vii2 then 6i uijl -uij2, so the differences will be in- 
dependent. Note also that interdependence of the sam- 
pling errors among locations does not affect the inde- 
pendence of the differences over time. 

It is not realistic to assume identical process errors, 
but considerably weaker assumptions that achieve es- 
sentially the same result are plausible. We have sug- 
gested earlier some of the random events that might 
cause the (jagged line) actual population to deviate from 
the (smooth line) mean. Such events may have effects 
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that are small or large, local or area-wide (including 
both the Impact and the Control locations), long-last- 
ing or short-term. Random births and deaths, or en- 
counters between individuals, are likely to have small, 
local, short-term effects. Movement by schools of fish, 
or the activities of a single fishing boat, might have 
large local effects, but these would often be short-term 
as immigrants arrive from surrounding neighborhoods. 
Large storms may have large area-wide effects that may 
be long-lasting if no sources of immigrants are nearby 
and population processes are slow to respond to the 
lower density levels. Broadscale weather changes, like 
El Nino events on the West Coast, are likely to have 
large, area-wide, long-lasting effects. 

Of these kinds of effects, only those that are large, 
local, and long-lasting will lead to serious violations of 
the independence assumption. Small effects will be 
overwhelmed by the noise from other errors, including 
sampling error. Short-term effects, by definition, will 
not affect samples spaced far enough apart. Area-wide 
effects may not lead to identical errors but will lead to 
highly correlated errors, whose difference is small with 
high probability. 

A simple model may clarify these assertions. A com- 
mon time series model is the Markovian one in which 
the deviation at time tii is affected by previous devia- 
tions only through the deviation at time tij, Such a 
model is 

Vijk = eavij_, k + A(l - e 7) Wijk, (6) 

where the wijk's have mean zero and variance 1 and 
are independent over time (i.e., w's for different tie's 
are independent), A and a are constant, and T = ti - 

tij- 1, the time between samples. Thus the deviation at 
time tijI affects that at time tij, but as the time gap 
increases its effect decreases, while the effect of events 
occurring between tij11 and ti, increases. If the sampling 
errors are independent of the process errors and their 
difference, uijl - uij2, has variance o2, then Eqs. 4, 5, 
and 6 can be used to show that the differences, bij, have 
mean zero, variance U2 + 2A2(1 - r), and covariances 
given by cov(6ij, b6j+? ) = 2A2e-T(l - r), where r is the 
correlation between wij, and wij2, the error at the two 
locations for the same time, and T is now t+n - tij. 
The correlation (=covariance/variance) between dif- 
ferences at different times will be small if A is small 
(small perturbations), aT is large (short-term effects; 
i.e., rapid decay, with sufficient spacing between sam- 
ples), or r is large (high correlation between locations; 
i.e., area-wide effects). 

Of course, this model and argument do not justify a 
claim of strict independence between observations, only 
one of low correlation. The effect of positively corre- 
lated observations is to inflate the value of the t statistic 
because the denominator of t (e.g. [s2/n]'?2) underesti- 
mates the variance of the numerator (e.g., X). In a 
Markovian model like the one above, if the spacings 
are equal (i.e., ti - tij_ = T is the same for all i and 

j), then the t statistic for the two-sample test on the 
differences is inflated by a factor close to the square 
root of (1 + p)/(l - p), where p is the correlation be- 
tween consecutive observations, e-aT(l - r)(1 - r + U2/ 

2A2)-'. The effect on more robust tests, like the U test, 
is similar but seems to be somewhat smaller (Serfling 
1968, Gastwirth and Rubin 1971, 1975). Thus, deci- 
sions based on decisive t values (greater than 3, say) 
will not be affected by even moderate p values (less 
than 0.2, say). Borderline t values will be suspect, but 
these will need scrutiny anyway because of possible 
nonnormality, influential outliers, etc. Low correlation 
is an additional nuisance but not a qualitatively dif- 
ferent one except that its effect does not decline as 
sample size increases. 

The independence (or low correlation) assumption 
is plausible if large, local, long-lasting random effects 
are unlikely. Whether or not they are depends on the 
situation being studied. We suspect the assumption 
would hold for many species in the pollutant discharge 
problem, but do not feel we know this well enough to 
be confident. Even for the open ocean power plant, one 
can think of difficulties. We have mentioned runoff as 
one. Another is the possibility that the long-term abun- 
dances of some sedentary species may depend heavily 
on events occurring in short time periods, e.g., recruit- 
ment or winter storms. The local effects of these ran- 
dom events may last for a long time. Nevertheless, 
these are rather special cases, and they are not hard to 
identify. For most species, the sources of local variation 
will be events at the individual level, very small-scale 
weather or water disturbances, or one-time shocks, all 
of which are likely to be short-term just because the 
ocean is big and contains powerful diffusing mecha- 
nisms. 

But plausibility is not enough. The independence 
assumption should also be checked against the data. 
There are, in fact, powerful tests for doing so. Many 
of these are reviewed by King (1 9 86). The most popular 
(and in many ways the best) is the Durbin-Watson test. 
This is a generalization, to a regression situation, of 
the von Neumann ratio test, which is suitable for our 
case. To carry out the test on the differences, Di = 

Xiii -XiJ2, we compute Q = (Dij+l - D )2/2(Dij- 
Di.)2. Small values of Q indicate serial correlations. 
Significance levels for nQ/(n - 1) are given by Hart 
(1942). The differences of the transformed abundances 
in Fig. 4E may be suspected to have serial correlation, 
although it should be noted that some observations 
that are close in time are quite different in value. In 
fact, for the data of Fig. 4E, Q is significant (P = .03). 

If additivity and independence are plausible as- 
sumptions, and also satisfy the tests, then we suggest 
using the t, U, and perhaps other standard two-sample 
tests (normal scores, trimmed t) to decide whether the 
power plant (for example) has an effect. Contradictory 
results and borderline values should lead to further 
scrutiny of the data. Possible serial correlation could 
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then be dealt with more directly by dropping some 
observations, averaging some neighboring values, 
transforming to approximate independence via Zi = 

Dij- (1 - Q/2)Dij-I (since 1 - Q/2 estimates p if the 
sampling times are evenly spaced), or using a more 
elaborate "intervention analysis" (Box and Tiao 1975). 

Interpreting the test results 

If our transformations have rendered the difference 
between the smooth lines constant in the Before period, 
and if our observations are independent, a statistically 
significant test result is due either to chance (with the 
stated probability) or to a change (Before vs. After) in 
the mean difference between locations. 

It is the second possibility, a change in the difference, 
that we want to attribute to the power plant. What we 
have labeled Hurlbert's assertion (la) seems to be that 
this cannot be done with certainty: the After differences 
might misbehave for some other reason. 

This possibility is an important reason in basic stud- 
ies for preferring experiments, involving randomized 
allocation of treatments, to natural observations. But 
Impact assessment does not fit the experiments/obser- 
vations dichotomy. The main objection to nonran- 
domized experiments and to observational studies is 
that the units receiving the treatment are not a rep- 
resentative sample of the "unit" population. Bias may 
enter either through the investigator's treatment allo- 
cation or through spurious effects due to causes other 
than the treatment (e.g., stress may cause both smoking 
and heart attacks). This objection does not apply with 
full force to impact studies. The Impact location abun- 
dances, Before and After the actual impact, are the only 
populations of interest: neither the time nor the place 
of impact can be unrepresentative in this sense, even 
if the power company has cleverly chosen the only site 
in the world that is invulnerable to power plant effects. 
The Control location also does not represent a popu- 
lation of locations, though it does play the usual role 
of helping distinguish between treatment effects and 
time effects. Lastly, the times at which samples are 
taken could give us an unrepresentative view of the 
continuous sequence of abundances: some randomiza- 
tion of sampling times may thus be advisable. How- 
ever, we note again that the parameter of interest is 
the mean of the hypothetical population of all possible 
re-runs of the abundance process, not the mean, over 
the time of the study, of the particular run that hap- 
pened to occur, so random sampling times do not give 
us randomly chosen population members. More often, 
sampling times will be chosen to minimize serial cor- 
relation (e.g., by equal spacing) and to maximize useful 
information (e.g., sampling in seasons when the target 
species should be reasonably abundant). 

There still remains the possibility of a large, long- 
lasting but unpredictable effect occurring at about the 
same time as the start-up, and affecting one location 
much more than the other. It would be very difficult 

to detect such an effect from the data, because it would 
not have to arise simultaneously with start-up, merely 
near enough to affect most of the After sample and 
little of the Before. It would also be difficult to estimate 
the probability of such an effect on an objective basis. 
Thus, this possibility must always be kept in mind, 
and efforts should be made to study the mechanisms 
both of a power plant effect and of any plausible al- 
ternative explanation for the results. However, ran- 
domized studies share these imperatives in many cases 
because their results may be due not to the treatment 
but to the way it is administered, e.g., placebo effects, 
cage effects in ecological studies, contaminants in drug 
studies. (For more subtle possibilities, see Bekan 1983 
and Connell 1983, and the pressure vs. volume ex- 
ample in Pratt and Schlaifer 1984.) The difference seems 
to be of degree, not kind. In both cases, possible al- 
ternative mechanisms must be proposed (often by the 
study's critics) and their likelihoods assessed (often 
rather subjectively). Although such mechanisms might 
occur in our power plant example, we feel they are very 
unlikely to occur undetected. This is why we describe 
Hurlbert's point (la) as having much reduced force in 
our setup. 

ASSUMPTIONS, GRAPHS, AND TABLES 

Perhaps the most unfortunate of Hurlbert's asser- 
tions is that labeled (3) in our Introduction, advocating 
graphs and tables when there seems to be no analytic 
procedure whose assumptions can be guaranteed to 
hold. 

The goals of statistical techniques can be classified 
into two fairly distinct groups. "Exploratory data anal- 
yses" (Tukey 1977) are attempts to reveal patterns and 
regularities in the data-to suggest hypotheses and po- 
tentially fruitful further studies. They require no formal 
attempt to distinguish chance patterns from systematic 
ones, or to quantify the confidence the conclusions 
warrant. A variety of imaginative, nonquantitative 
methods has developed (see Chernoffis 1973 proposal 
to cluster multivariate observations by converting them 
into computer-drawn faces). We have no objection to 
graphs and plots, unsupported by formal inference, in 
these cases where the "conclusions" are really sugges- 
tions. 

But impact studies almost always belong to the sec- 
ond group, "confirmatory" rather than exploratory. 
There are clear (if not always clearly stated) hypotheses 
at issue -most frequently, perhaps, that "the interven- 
tion has reduced the abundance of species X in the 
Impact area." These hypotheses need to be resolved 
in as quantitative a way as possible: that is, the in- 
vestigator is asked to give one or more numbers de- 
scribing the extent to which the data support the hy- 
pothesis. There are plenty of arguments about what 
numbers should be given, but none about the need for 
a quantitative conclusion. Indeed, the final decision- 
e.g., to close down a power plant, alter its design, mit- 
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igate the effects, or do nothing-is inescapably quan- 
titative in that it compares, implicitly or explicitly, the 
benefits (or costs) of the available options and chooses 
what is estimated to be the best. 

In these cases, the unsupported use of graphs and 
tables is usually inappropriate. The investigator is re- 
quired to use the data to decide whether the evidence 
for the hypothesis is strong enough for some action to 
be taken (or belief to be adopted). Such a quantitative 
assessment necessarily requires assumptions about the 
relationship between the data and the hypothesis at is- 
sue. 

Not a single one of the objections Hurlbert raises 
against inferential statistics in this context is resolved 
by the presentation of graphs and tables. Indeed, vir- 
tually all appear with additional force. These objections 
all relate to the assumptions required for the inferential 
procedures to be valid. But the graphs and tables need 
assumptions too, if conclusions are to be drawn. Just 
because they are not stated does not mean that they 
are not there or are not needed. It is far more likely to 
mean that they have not been explicitly listed, exam- 
ined for plausibility in the physical situation, or tested 
against the data. 

In fact, it is likely to be generally the case that draw- 
ing conclusions from graphs and tables requires all the 
assumptions of inferential statistics (e.g., indepen- 
dence, additivity, no additional sources of error, etc.) 
together with some equally dubious new ones, e.g., that 
the viewer's interpretation of the graph is unaffected 
by the graph's color, scale, draftsmanship, position on 
the page, and other irrelevancies. See Wainer (1984) 
and the beautiful book by Tufte (1983). 

Of course we have no objection to the use of graphs 
and tables in support, rather than instead, of inferential 
procedures, where they are essential for checking as- 
sumptions and for giving a clearer impression of the 
physical, rather than statistical, significance of our ob- 
servations. 

CONCLUSIONS 

Restricting ourselves to only one section of Hurl- 
bert's (1984) paper does not indicate agreement or dis- 
agreement with the rest of it. In fact, we agree with the 
main point, that statistical analyses in ecology too fre- 
quently underestimate error by ignoring some of its 
sources. In this section we offer some thoughts on what 
is to be done. 

Part of the responsibility for the misuse of statistical 
procedures no doubt rests with statisticians, who some- 
times do not appreciate the applied aspects of their 
work sufficiently to explain it clearly to users or to think 
about specific applications. We would especially like 
to see more attention paid to the meaning of the as- 
sumptions (or their violation) in practical situations. 

Part of the responsibility may also rest with ecolo- 
gists who do not take statistics seriously as a discipline: 

who either accept any and every analysis regardless of 
whether the assumptions make sense or fit the data; or 
reject virtually every analysis by insisting on strict 
compliance with all assumptions, without attempting 
to distinguish either essential assumptions (e.g., often, 
independence) from marginal ones (e.g., often, nor- 
mality) or minor violations (a serial correlation coef- 
ficient of 0.05, say, when t = 6 or more) from major 
ones (a correlation coefficient of 0.7, say, when t is 
borderline). 

We feel that Hurlbert's treatment of statistical issues 
is better than those of many who attempt to lay down 
the statistical law to biologists and other empirical sci- 
entists, because it goes deeper than a few quotes from 
standard textbooks. Nevertheless, a still more ecu- 
menical spirit is called for. 

Many of these issues have been discussed in detail 
by statisticians, economists, sociologists, philosophers, 
and others. The foundations and the meaning of data- 
based inference have been much discussed (e.g., Jef- 
freys 1961, Birnbaum 1962, Hacking 1965, Savage 
1972, Good 1983; see also two collections: Kemp- 
thorne 1976, Neyman 1976, Pratt 1976, Roberts 1976; 
and Benenson 1977, Birnbaum 1977, Giere 1977, Kie- 
fer 1977, Kyburg 1977, Le Cam 1977, Lindley 1977, 
Neyman 1977, Pratt 1977, Rosenkrantz 1977, Smith 
1977, Spielman 1977; a stimulating introduction to 
some of the problems is in chapter 1 of Berger 1980). 
Another active topic is experimental design (e.g., 
Kempthorne 1952, Kiefer 1959, and the discussions 
of randomization in Rubin 1978, Basu 1980, Smith 
1983, and Pratt and Schlaifer 1984). Since economists 
and sociologists often have at least as much trouble 
constructing "clean" experiments as ecologists do, some 
of their thoughts on these problems are helpful: Camp- 
bell and Stanley (1966), Riecken et al. (1974), and Cook 
and Campbell (1979) are examples. 

It is not reasonable to expect ecologists (or, perhaps, 
even statisticians) to become familiar with all the major 
ideas in these areas. The references cited are only a 
small sample, and few of them are easy reading. (The 
three sociology books, the discussions of randomiza- 
tion, and Berger 1980 are perhaps the most accessible 
of them.) Further, although the areas of agreement are 
larger than the noise would sometimes lead one to 
believe, none of these issues can be regarded as finally 
settled, or seems likely soon to be. Still, there is a real 
need both for some familiarity with these ideas (if only 
to prevent valuable but imperfect data being discarded 
as completely worthless) and for a greater respect for 
contributions from other fields (if only to avoid re- 
peating the histories of their disputes). 
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